Engineering Mechanics

Center of Gravity (Areas and Lines)

$$
\begin{aligned}
& \Sigma F_{z}: \quad W=\Delta W_{1}+\Delta W_{2}+\cdots+\Delta W_{p} \\
& \Sigma M_{y}: \quad \bar{x} W=x_{1} \Delta W_{1}+x_{3} \Delta W_{2}+\cdots+x_{n} \Delta W_{n} \\
& \Sigma M_{x}: \quad \bar{y} W=y_{1} \Delta W_{1}+y_{2} \Delta W_{2}+\cdots+y_{n} \Delta W_{n} \\
& \Sigma M_{y}: \times W=\Sigma x \Delta W \\
& \Sigma M_{x}: \bar{y} W=\Sigma y \Delta W \\
& \dot{W}=\int d \vec{W} \quad \vec{x} W=\int x d W \quad \bar{y} W=\int y d W
\end{aligned}
$$

First Moments of Areas and Lines

First Moment of Area with respect to x - axis is represented as $Q x$, which is the
following integral
$Q x=\int y d A=\bar{y} A$
First Moment of Area with respect to y-axis is represented as $Q y$, which is the
following integral
$Q y=\int x d A=\bar{x} A$
Similar cases hold for lines or wires.

[^0]The point at which the resultant (total weight of a body) of a set of distributed forces (individual weight of each particle) acts is known as Center of Gravity of the body.

Considering a flat homogenous plate with uniform thickness,
$W=\gamma t A$
For individual particle,
$\Delta W=\gamma t \Delta A$
Substituting in the previous equations,

Considering a homogenous wire with uniform cross section,
$W=\gamma a L$
For individual particle,
$\Delta W=\gamma a \Delta L$
Substituting in the previous equations,
$\begin{array}{ll}\Sigma M_{i}^{\prime \prime} & \vec{x} A=x_{1} \Delta A_{1}+x_{2} \Delta A_{2}+\cdots+x_{n} \Delta A_{n} \\ \Sigma M_{n} & \bar{y} A=y_{1} \Delta A_{1}+y_{2} \Delta A_{2}+\cdots+y_{n} \Delta A_{n}\end{array}$

$$
\bar{x} A=\int x d A \quad \bar{y} A=\int y d A
$$

First Moments of Areas and Lines

Axis of Symmetry: If any point P has its mirror point P^{\prime} with respect to an axis $B B^{\prime}$, that $P P^{\prime}$ is perpendicular to $B B^{\prime}$ and $B B^{\prime}$ bisects $P P^{\prime}$, then $B B^{\prime}$ is known as the Axis of Symmetry.

The first Moment of Area or Line with respect to a Axis of symmetry is zero. \square Centroid lies on the axis of symmetry.

First Moments of Areas and Lines

\checkmark If there are two axes of symmetry, centroid must lye on the intersection point of the axes.

Composite Plates and Wires

$$
\begin{aligned}
& O_{r}-X I A-\Sigma X A \\
& O_{d}=\bar{Y} L A=\Sigma Y A
\end{aligned}
$$

Problem 6.1 (Beer Johsston_10th edition_P5.8)
Locate the centroid of the Plane area as shown.

Composite Plates and Wires

$$
\begin{array}{ll}
\Sigma M_{y_{1}} & \bar{X}\left(W_{1}+W_{2}+\cdots+W_{3}\right)-\bar{x}_{1} W_{1}+\bar{x}_{2} W_{2}+\cdots+\bar{x}_{n} W_{s} \\
\Sigma M_{e}: & \bar{Y}\left(W_{1}+W_{2}+\cdots+W_{n}\right)=\bar{y}_{1} W_{1}+\bar{y}_{2} W_{2}+\cdots+\bar{y}_{n} W_{n}
\end{array}
$$

$$
\begin{aligned}
& \Sigma M_{y}: \bar{X} \Sigma W=\Sigma X W \\
& \Sigma M_{x}: \bar{Y} \Sigma W=\Sigma y W
\end{aligned}
$$

Problem 6.2 (Beer Johston_10th edition_P5.9)
Locate the centroid of the Plane area as shown.

Application of Center of Gravity

Area and Volume Determination

- Theorems of Pappus-Guldinus:

Two related theorems dealing with the surface areas and volumes of surfaces and solids of revolution.

The book of Pappus Alexandrini (290-350) Mathematician Paul Galdin (1577-1663)

Application of Center of Gravity

Pappus-Guldinas Theorem

-THEOREM I

The area of a surface of revolution is equal to the length of the generating curve times the distance traveled by the centroid of the curve while the surface is being generated.

-THEOREM II
The volume of a body of revolution is equal to the generating area times the distance traveled by the centroid of the area while the body is being generated.

Determine the volume and the surface area of the solid obtained by rotating the area of about (a) the line $x=-60 \mathrm{~mm}$, (b) the line $y=120 \mathrm{~mm}$.

Ans.: (a) $V=2.26 \times 10^{6} \mathrm{~mm}^{3}, A=116.3 \times 10^{3} \mathrm{~mm}^{2}$ (b) $V=1.471 \times 10^{6} \mathrm{~mm}^{3}, A=116.3 \times 10^{3} \mathrm{~mm}^{2}$

End of Portion 6

Determine the volume and the surface area of the solid.

References

- Vector Mechanics for Engineers: Statics and Dynamics

Ferdinand Beer, Jr., E. Russell Johnston, David Mazurek, Phillip Cornwell.
> Engineering Mechanics: Statics and Dynamics
R.C. Hibbeler

[^0]: Note:
 $>$ If the centroid of an area or line lies on any co-ordinate axis, then the first moment of area or line with respect to that co-ordinate axis is zero.
 $>$ If the first moment of area or line with respect a co-ordinate axis is zero, then the centroid of the area or line lies on that co-ordinate axis.
 $>$ So, if any axis (regardless co-ordinate axes) can be selected with respect to which the first moment of area or line is zero, then the centroid lies on that axis.

